SlopCodeBench: Measuring Code Erosion Under

lterative Specification Refinement

Authors: Gabriel Orlanski, Devjeet Roy, Alexander Yun, Changho Shin, Alex Gu, Albert Ge, Dyah
Adila, Aws Albarghouthi, Fredric Sala
December 2025
DOI: https://doi.org/10.5281/zenodo.18405900

Abstract

When building real software, it is impossible to know the whole problem space or specification
up front. Requirements evolve as the problem is better understood, and code must be updated
repeatedly to reflect those changes. Early design decisions often determine the difficulty of
these updates.

Despite this, most agentic software engineering benchmarks evaluate models as if
specifications were a perfect oracle: a single, fixed problem that can be solved in one pass, after
which no further changes are required. This framing misses the fundamental iterative nature of
software development.

We introduce SlopCodeBench (SCBench), a benchmark that evaluates coding agents under
iterative specification updates. Each problem is framed as a sequence of checkpoints: an agent
implements an initial specification, then extends its own solution to satisfy new requirements,
and then extends it again. In this setting, early design choices may either support later
extensions or make them increasingly difficult.

This initial release comprises 718 novel problems, each with 3—-6 checkpoints. Problems begin
with a core specification and are incrementally extended with additional functionality. For
example, an agent may first implement a text search tool for Python files, then extend it to
support JavaScript and C++, and finally add support for tree-sitter fields. Agents are evaluated in
a black-box setting: only a CLI interface or API contract is provided, with no prescribed function
signatures, module boundaries, or architectural guidance.

Rather than attempting to assign a single notion of “code quality,” we examine two surface
properties of agent-generated code under iteration: verbosity, characterized by overly defensive
code and redundant anti-patterns, and structural erosion, characterized by organizational strain
such as control-flow complexity and brittle structure. We use “slop” informally to refer to
surface-level verbosity and structural patterns, without implying a judgment of overall code
quality. This approach has produced some exciting preliminary findings: In our experiments,
progress through iterative specifications is often associated with increased verbosity, while
advancement is constrained when structural erosion accumulates. These dimensions move in

different, sometimes opposing, directions, revealing trade-offs that are invisible in single-shot
evaluations.

Inspired by Terminal Bench, we release SCBench as a community-driven benchmark. We provide
guidelines for contributing new problems and define acceptance criteria to ensure consistency
across tasks. This release is intended as a v0.1 exploratory probe rather than a definitive
evaluation, to enable further investigation into long-horizon agentic coding behavior.

Initial Spec: Update Spec 2: Further Spec 3+:
; P Requirements P : Updates P
Basic Python » | Add JavaScript More
code search & C++ with Requirements
(exact match, regex) tree-sitter AST
! [
O src/ O sre/ By
O main.py = 0 main.py *
O src/ o
O [|, O | s | ¢, [
Cod‘mg O regex.py + Codmg O js_parser.py + Codlng “ D js_parser.py + A.
Agent o Agent [regex.py - Agent - [regex.py -
ki
Solution 1: Solution 2: Final Solution:
High Quality Degrading Quality Low Quality
(clean src/) (Slop begins) (Slop accumulates)

What We Measure

Beyond correctness, we focus on other measurable issues in the code. We distinguish between
two types of code quality issues that erode the maintainability of software:

Verbosity is the surface-level erosion of quality through overly verbose code. Such artifacts
increase the cognitive load required to understand what a snippet is doing. We look at
specifically:

e LLM as ajudge — we have crafted 45 generic criteria for identifying overly verbose
issues in code. Some examples are “narration comments”, “unrequested features”, and
“handrolled standard operations."

e AST-Grep rules — We handcrafted additional AST-Grep rules following the patterns that
we consider to erode at code quality. These are checked to ensure there is no overlap

with the lint or rubric rules.

Structural Erosion is the deeper architectural problem with a solution indicative of haphazardly
solving the problem in minimal work required. They range from poor separation of concerns to
abstractions that violate the single-responsibility principle. Without the iterative design of CEB,
these would be too subjective to measure. Instead, we look at:

e Cost, time, and token usage to progress from checkpoint N to N+1

e The number of lines added and removed to go from N to N+1.

https://www.tbench.ai

e What is the percent change in the number of decision points in a piece of code.
Cyclomatic complexity is the number of if/elif/while/for/except/etc in a block.

e Curated Ruff Linting Errors — While linting errors by themselves are not indicative of
careless design, and some are pretty useless, there are a large number of linting errors in
Ruff that signal the exact qualities of structural erosion that we care about. For example,
SIM or PLR.

Example of both from GPT-5.2 on checkpoint 4 of code_search:

This approach has all of the hallmarks of both overly verbose code and structural erosion that we
care about. From the six chained or conditions to the repeating of == comparisons that could
easily be a dictionary lookup. Such patterns take time to understand and could easily be
abstracted away. It could work in the present (hint it does not), it creates more buildup that will
need to be handled eventually when

Now let's look at the same functionality from the same model in a different run:

https://radon.readthedocs.io/en/latest/intro.html#cyclomatic-complexity
https://docs.astral.sh/ruff/rules/#flake8-simplify-sim
https://docs.astral.sh/ruff/rules/#refactor-plr

1ode, text_bytes)

It has all the bad parts of the prior example, but somehow makes it even worse. While these are
single examples, they get at the core of why it is so crucial that, as a community, we have a
benchmark to measure these behaviors. They affect every aspect of how agents and humans
interact with code written by an LLM.

Iterative Evaluation Is The Future

Aider and SWE-Bench evaluate an agent'’s ability to solve an issue given a frozen repository.
Undoubtedly, this is an important capability, but this approach addresses only a single point in
time. An agent could produce an entirely viable fix that is a distance from the ground truth.
Seeing that fix instead of the ground truth would fundamentally change how developers iterate
on the codebase going forward. Thus, measuring qualitative metrics at a single snapshot in
time yields a noisy signal that is scaffolded by prior human decisions. Furthermore, agents are
not evaluated on their performance in long-horizon coding tasks, where they must either live
with or redesign their original choices. Viewing agentic benchmarks as iterative processes is
the only way to evaluate the true nature of software engineering.

We must adopt this framing both now and for the future of agentic coding. Much of the recent
discourse on agentic coding tools has focused on the “slop” they generate (i.e., verbose
comments, defensive coding, bloat). While “slop” is ill-defined, the core of these grievances hits
squarely on the limitations of single-iteration benchmarks. It is tough to understand and
maintain code riddled with these issues. This extends to structural issues generated by models:
making minor modifications often requires rewriting the entire codebase because it is easier

https://aider.chat/docs/leaderboards/
https://www.swebench.com
https://x.com/ericzakariasson/status/1995671800643297542
https://x.com/ericzakariasson/status/1995671800643297542
https://x.com/vikhyatk/status/1988398161665356121
https://x.com/giffmana/status/1964038932179390759

than extending agent-written code. Iterative benchmarks like SCBench are crucial for truly
autonomous SWE agents. Without them, we would have no way to measure their ability to
function autonomously given only specification updates, because it is impossible for us to know
every required feature or extension from the outset.

Design Philosophy

None of this would be possible without deliberate design choices in our benchmark
construction:

No prescribed interfaces. All that is provided is the external contract of either the CLI interface
or the API endpoints and response formats. Agents select the underlying architecture and the
approach to solving the problem. Providing a function signature or other internal hints would
mask the signal we want to measure.

No explicit test cases or test suite. The model only sees the examples in the spec and the
explanation of the behaviors. Part of eroding code quality is the inability to think of obvious
edge cases for a spec. Thus, we require the agent to identify and handle the specified edge
cases.

Black-box and language agnostic evaluation. Solutions are judged purely on the outputs they
produce, given an input. Each problem includes normalization code to ensure that minor
arbitrary decisions, such as white-space formatting, do not affect the solution’s correctness.

Results

We detail our initial results here. As we continue to add more problems and collect more run
data, we hope to develop these metrics further to understand better how agents interact with the
iterative nature of software development.

Metrics

As every problem, and by implication every checkpoint, requires a different amount of code to
solve it we normalize our quality by logical lines of code. The intuition is that we want to
quantify how often a user encounters artifacts of overly verbose code or erosion of the code's
overall structure. We do not include comments or blank lines in this code count.

Our two main quality metrics are:
e Verbosity is the count of occurrences of either the AST Grep rules or the LLM as a
Judge-flagged span, relative to the logical lines of code. It is calculated as the sum:

Verbosity = (AST-Grep Violations + Rubric Violations) / LOC + (trivial wrappers + single use
functions) / Total Functions

e A trivial wrapper in this case is a function that returns the result of another
function as its only node
e A single-use function is one that is only ever called once.
e Structural Erosion Score is the percentage of functions with > 10 Cyclomatic Complexity,
summed with the number of lint errors per line of code. Symbols with cyclomatic

complexity greater than 30 are counted twice. We follow radon in establishing these
cutoff points.

We average these across all checkpoints.

Models

We report runs for the Models:

e GPT 5.1 Codex Max and GPT 5.2 ran through the codex CLI in headless mode
e Opus 4.5 using the Claude Code CLI

For all setups, we use a simple prompt that only tells the agent to “Implement a program that
100% solves the specification. That is all you need to do.” We also instruct it to track all the
libraries it uses in a requirements file. This prompt eliminates the possibility of biasing the agent
toward a specific approach, instead giving it the freedom to decide.

Initial Results

Quality & Erosion vs Performance

Lower X values indicate cleaner code structure

. No Thinking
¢ A4

11% A Low Thinking

@ High Thinking

7 109 A Q@ o a @ GPT5.1 Codex
=
& © GPTs2
2 9% o]
% /0 O A O A Opus 4.5
(=8
3
[5]
5 &%
3 A ¢ < A

7%

; ¢ @ < o)

0

0.85 09 0.95 038 04 042 044 046 048

Verbosity Score Structural Erosion Score

T oI GPT 5.1 Codex

No Thinking
10 - 25 o Low
M High
g 8.8 20
GPT 5.2
Mo Thinking
B Low
o (3] =] 15
o e B High
4 10 Opus 4.5
Mo Thinking
B Low
2 5 B High
0 0
Checkpoints Solved Problems Partial Solved

Takeaway: Our initial results indicate a stronger relationship between code verbosity and agent
performance. Given that more verbose code could be easier for the model to understand in
subsequent checkpoints.

am Resource Usage 60 GPT 5.1 Codex

600 Mo Thinking

3.5M 0 o Low
M High
500 3M
40 GPT 5.2
400 2.5M = * o Mo Thinking
30 . W Low
2M B High
300 : o
1.5 20 o o o ODI.IS 4.5
Mo Thinking
200 M i 10 B Low
s B High
s
b I I - 0
0 0

Takeaway: Clearly, Opus 4.5 is the highest performer in this setting, yet it is interesting to note
that for both the Codex Max and Opus, the usage of the non-thinking setting is well above the
low-thinking setup. This implies that the non-thinking models take a more brute-force approach
at each checkpoint than is required as the process progresses.

Cost ()
Tokens
Time (M)

=
&28

=1

Deltas Between Checkpoints

We define delta as the percentage change from checkpoint N to N+1. We plot them here for
LOC and High Complexity symbols:

LOC Delta GPT 5.1 Codex

300
No Thinking
. . [0 Low
250 O High
200 . . - GPT 5.2
" . Mo Thinking
] [0 Low
150 . . O High
1] []
o
& Opus 4.5
6 100 [NoThinking
2 . Low
High
50 H B Hg
0
-50 .
-100
200 High Complexity Symbols Delta GPT 5.1 Codex
. No Thinking
[Low
[High
600 ‘ GPT5.2
Ne Thinking
[Low
[High
Q400 . . .
= Opus 4.5
6 [Mo Thinking
a® . . . Low
High
200 . . B Hig
0 @

Takeaway: There is significant growth, checkpoint over checkpoint, in symbols with high
complexity (Cyclomatic complexity > 10), indicating a weak overall structure. For newly flagged

spans, during LLM evaluation as a judge, we observe a significant increase relative to the prior

checkpoint.

Agent Design Decisions

While it is not currently possible to run each of those runs multiple times due to the cost, we

instead run the agents in different settings numerous times on a subset of problems:

e We have 25 total runs across five setups on three selected problems:
o code_search: almost every agent gets the first two checkpoints right due to their
simplicity, but the third checkpoint requires them to match structural patterns in

code through AST parsing. After this point, none pass another checkpoint

o file_backup: Agents fail to respect the ordering in the examples given and end up
unable to pass any checkpoint outside.
o trajectory_api: Implementing a rest APl with state management

Here are their mean test pass rates across the runs:

setup code_search file_backup trajectory_api
gpt-5.1-codex-max/high 0.688+0.142 |0.352+0.209 |0.505 + 0.056
gpt-5.1-codex-max/low 0.560 £ 0.213 | 0.077 £ 0.025 0.503 £ 0.061
gpt-5.2/high 0.816+0.007 | 0.504 +0.031 0.533 +0.024
gpt-5.2/low 0.796 +0.018 0.390+0.106 0.533 +£0.043

The interesting parts begin when we examine the average coefficient of variance for each

checkpoint within their setup group:

where Test Pass Rate Non-Regression Pass Rate Delta LOC | Churn Ratio Mean Function Line Count
First 0.121 0.121 — — 0.162
Middle 0.251 0.299 0.247 0.24 0.165
Final 0.313 0.388 0.433 0.548 0.176

Quick notation:

e When represents which checkpoint this is from.
o Firstis the first checkpoint.

o Middle is any checkpoint that falls between the first and last

o Finalis well...the last checkpoint
Test Pass Rate is the % of tests passed
Non-Regression Pass Rate is the non-regression test for that checkpoint
Delta LOC is the percent change in logical lines of code from the previous checkpoint
Churn Ratio is the number of lines added or removed divided by the number of lines in
the last checkpoint. This only includes source files in the target language.
e Mean Function Line Count is the average number of lines per function.

While the pass rates may seem random or even noisy, they are not. Instead, it is what each
model decides at the initial checkpoint, which is why the pass rates are consistent. But those
decisions compound across checkpoints, leading to very different results. This is a significant
issue regarding their reliability. Two developers producing entirely different outcomes on the
same project is objectively negative.

Acknowledgements

This would not be possible without the amazing group of people who have worked on this
project: Devjeet Roy, Alex Yun, Changho Shin, Alex Gu, Albert Ge, Dyah Adila, Aws
Albarghouthi, Fred Sala

We also want to thank Abtin Molavi, Amanda Xu, June Cho, Xavier Garcia, Samuel Guo, and
Nick Roberts for the feedback on this project as it developed. Additionally, we want to
acknowledge the support from DARPA and the NSF on this project. Finally, we thank the
fantastic team developing Terminal Bench for their inspiration and feedback on this.

https://devjeetr.github.io
https://www.linkedin.com/in/alexander-yun-19ab74181
https://ch-shin.github.io
https://minimario.github.io
https://www.albertge.com
https://dyahadila.github.io
https://pages.cs.wisc.edu/~aws
https://pages.cs.wisc.edu/~aws
https://pages.cs.wisc.edu/~fredsala

	Abstract
	What We Measure
	Iterative Evaluation Is The Future
	Design Philosophy
	Results
	Metrics
	Models

	Initial Results
	Deltas Between Checkpoints
	Agent Design Decisions

	Acknowledgements

