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Abstract
Large language models have shown that impres-
sive zero-shot performance can be achieved
through natural language prompts (Radford
et al., 2019; Brown et al., 2020; Sanh et al.,
2021). Creating an effective prompt, how-
ever, requires significant trial and error. That
prompts the question: how do the qualities of a
prompt effects its performance? To this end, we
collect and standardize prompts from a diverse
range of tasks for use with tasks they were not
designed for. We then evaluate these prompts
across fixed multiple choice datasets for a quan-
titative analysis of how certain attributes of a
prompt affect performance. We find that in-
cluding the choices and using prompts not used
during pre-training provide significant improve-
ments. All experiments and code can be found
here.

1 Introduction

Recent work has shown that using a natural lan-
guage (NL) prompt with pre-trained language mod-
els (LM) significantly improves performance in
few-shot and zero-shot settings (Brown et al., 2020;
Schick and Schütze, 2021b), to the point where they
can be worth 100s of data points (Scao and Rush,
2021). Further, T5 (Raffel et al., 2020) showed that
simple prompts and reformulating NLP tasks as
text-to-text performs well on a wide range of tasks.
Recent models such as FLAN (Wei et al., 2021b)
and T0 (Sanh et al., 2021) demonstrate that multi-
task training a large LM with prompts results in
improved zero-shot performance on a wide range
of tasks. However, manually designing a prompt is
a non-trivial task due to the trial-and-error nature
of the task (Jiang et al., 2020; Shin et al., 2021).
Some works focus on “prompt programming”– best
practices for designing prompts (Reynolds and Mc-
Donell, 2021; Liu et al., 2021a). While others have
looked towards continuous “soft-prompts”– ran-
dom vectors added to the input sequence, which

Figure 1: Overview of the approach. For a given ex-
ample from a dataset (leftmost box) we use a prompt
from a different task to perform zero shot predictions
with T0-3B (Sanh et al., 2021). The bolded text in the
example represents its choices.

are then fine-tuned (Zhong et al., 2021; Qin and
Eisner, 2021). However, recent work has revealed
that these prompts are susceptible to minor pertur-
bations (Mishra et al., 2021).

Motivated by this, we aim to conduct a quanti-
tative analysis of what affects a prompt’s perfor-
mance. We evaluate T0-3B (Sanh et al., 2021) on
generalized prompts from a wide range of tasks
with eight datasets to provide a quantitative analy-
sis of how the qualitative aspects of a prompt effect
its performance.

We collected 95 prompts across 20 tasks and
evaluated each on eight datasets. We find that us-
ing a prompt performs better for every evaluation
task than not using a prompt. Further, we find that
the set of prompts with the highest performance is
not the ones designed for the specific task for seven
of the eight datasets. In our ablations, we find that
adding a small amount of task-specific NL to the
generalized prompt increases performance by a me-
dian of 4.65%. Finally, we find that prompts with
the choices present outperform those that do not
and that presenting the options as multiple distinct
choices further improves the results. Additionally,
the longer a prompt is, the worse it performs.

2 Methodology

Our overall approach is detailed in Figure 1.
Given a downstream multiple-choice task To =

https://github.com/gabeorlanski/zero-shot-cross-task


{(x1,y1), . . . , (xn,yn)}, evaluate how well T0
(Sanh et al., 2021) performs when using a prompt
Pd designed for a different task Td.

2.1 Fixed Choice Tasks
For the purposes of this paper, we limit the scope of
the tasks we look at to be only multiple choice tasks
whose choices are constant across all examples.
Thus, for To = {(x1,y1), . . . , (xn,yn)}, every
yi ∈ Co where Co = {C1, . . . , Cc} with lengths
ℓ = {ℓ1, . . . , ℓc}. To make a prediction for the
example point xi, we follow Holtzman et al. (2021)
and use rank scoring: taking the choice with the
highest probability as defined by

argmax
Cj∈Co

ℓj∏
k=1

P (Ck
j |xi, C1

j . . . Ck−1
j ) (1)

However, the lengths in ℓ are not guaranteed to
be the same and thus Equation 1 will unintention-
ally penalize longer choices (Brown et al., 2020;
Holtzman et al., 2021). We thus follow prior work
and take the choice with the highest Average Log-
Likelihood

argmax
Cj∈Co

∑ℓj
k=1 log[P (Ck

j |xi, C1
j . . . C

k−1
j )]

ℓj
(2)

2.2 Generalized Prompts
We use the PromptSource1 framework proposed
by Sanh et al. (2021) for templates as it provides
a standardized format for managing prompts. We
standardize the input fields and answer formats
across all tasks such that they fell into three gen-
eral categories: CLASSIFICATION, ENTAILMENT,
and QUESTION ANSWERING (QA). Table 1 dis-
plays an example of what the generalization would
look like for an ENTAILMENT prompt. To use a
prompt with a task that does not have the same
number of inputs, we add additional task specific
NL to better align the inputs. To use the example
prompt from Table 1 with a sentiment classification
task, we would map the input text from the task
to the premise field and pass “what is the
sentiment” as the hypothesis. In prompts where
answers choices are present, we replace them with
an additional input field for the choice string(i.e.
“yes, no, or maybe”) to hold how the choices are
presented constant across all prompts. A detailed
breakdown of the tasks used for the generalized
prompts can be found in Table 3.

1https://github.com/bigscience-workshop/promptsource

3 Experimental Setup

3.1 Datasets

For all datasets, we use the most recent version on
HuggingFace (Wolf et al., 2020). Every evaluation
is done using the validation split as per Sanh et al.
(2021). For the evaluation datasets, we again fol-
low Sanh et al. (2021) and use: Adversarial NLI
(ANLI) (Nie et al., 2020), CommitmentBank (CB)
(De Marneff et al., 2019), Recognizing Textural
Entailment (RTE) (Dagan et al., 2005; Bar-Haim
et al., 2006; Giampiccolo et al., 2007; Bentivogli
et al., 2009), and Words In Context (WiC) (Pile-
hvar and osé Camacho-Collados, 2018).

Two additional tasks are used to evaluate T0’s
performance on complex tasks in unseen domains:
Algebra Question Answering (AQuA) (Ling
et al., 2017) and CraigslistBargains (He et al.,
2018). Descriptions for these two tasks can be
found in Appendix B.

For the generalized prompts, we collect 86
prompts across 19 distinct tasks. In addition to
these, we also include 12 prompts with no addi-
tional NL for each of the three categories for 4
different ablations. More details can be found in
Appendix A.

3.2 Model and Metrics

We evaluate the performance of the 3B parameter
T0, and T5 (Raffel et al., 2020) models with the
HuggingFace implementation (Wolf et al., 2020)
as we were limited to a single RTX Titan 24GB
card. Following prior works (Sanh et al., 2021;
Brown et al., 2020; Holtzman et al., 2021), we
report the accuracy and F1 scores on each of the
eight datasets.

As each task will have different mean metrics,
we cannot compare the raw accuracy and F1 scores
across tasks. For a given prompt, we calculate the
median accuracy and F1 ranks compared to the 95
other prompts for all evaluation tasks. As the rank
is ascending, lower values for median accuracy
rank (MAR) and median F1 rank (MFR) indicate a
better performing prompt.

4 Results

4.1 Baselines On New Tasks

As we evaluate T0-3B on two new tasks, we first
want to gauge how the model performs as shown
in both Figure 2 and Table 4. We follow Sanh et al.
(2021) in using rank scoring without length nor-



Task Prompt

Original Sentence A: {{sentence1}} Sentence B: {{sentence2}} "{{word}}" has a

similar meaning in sentences A and B. True or False?

Generalized Sentence A: {{premise}} Sentence B: {{hypothesis}} "{{domain}}" has a

similar meaning in sentences A and B. {{ choice string }}?

Example Sentence A: What is 2+2? Sentence B: Choices are: ∞, -10, fish,

4,
√
2 "math problem" has a similar meaning in sentences A and B.

"A", "B", "C", "D" or "E"?

Table 1: Sample prompt from WordsInContext Task (Pilehvar and osé Camacho-Collados, 2018) and its generalized
form. Each {{ }} represents an input from the dataset. The colors are the alignment of inputs.

malization as defined by Equation 1 and find that
for both AQuA and CraigslistBargains, the base
T5 model performs better than T0. However, T0’s
unweighted multi-class F1 is better than that of T5
on both tasks, indicating that T5 achieves a higher
score due to only predicting a subset of the choices.
Figure 3 provides further evidence for this hypothe-
sis. In both AQuA and CraigslistBargains, T0 more
evenly distributes its predictions across the possi-
ble choices where as T5 heavily favors a subset of
the choices. Thus, the disparity in the accuracy is
likely a result of class imbalance in the evaluation
datasets in which T5 is ’lucky’ in heavily predicting
the class that was more populous. We consider this
to be ’luck’ as T5 outperforming T0 only occurs in
only two of the datasets we examined.

4.2 Generalized Prompts

We report the results of the cross-task evaluation
in Table 2. We find that the only task in which the
original2 prompt performs best is ANLI R2 with an
accuracy of 34.70. Conversely, the worst perform-
ing prompts for the AQuA task were its original
prompts with an accuracy of 17.32. Furthermore,
we find that there is no task out of the eight used
for evaluation where not using a prompt has the
best performance.

We report how the added NL discussed in sub-
section 2.2 effects the zero-shot performance in
Table 5. Across the eight evaluation tasks, adding
some task specific text leads to an average increase
of 4.65% in the accuracy and a 2.34% increase
to the unweighted multiclass F1. However, there
was also a decrease of 4.21% and 13.90% to min-
imum accuracy and unweighted multiclass F1 re-
spectively. This implies that the added extra text

2By original we are referring to the prompts specifically
designed for a task.

helps to better amplify the negative and positive
elements of a prompt.

4.3 Qualitative Analysis of Prompts

Table 5 displays the rank statistics across multiple
ablations and Table 7 displays the correlations of
a prompt’s qualities with their rank. In prompts
which have choices, the MAR is 33.12 compared
to 52.25 when the choices are left out. However,
the range as indicated by the Q1 and Q3 MARs is
significantly larger when the choices are included,
implying that adding the choice string causes high
variance.

We also find that when the choices are presented
as multiple distinct choices3 the MAR is further
improves to 22.25. In comparison, the prompts
with choices that are not in this format have a MAR
of 36.00. These results provide further evidence
to the findings from Wei et al. (2021a) that clearly
distinguishing the options in a prompt improves
performance.

Next, we find that the median rank of prompts
used in training is 50.25 compared to 42.00 of the
unseen prompts. The F1 scores display a simi-
lar pattern with training prompts having a MFR
of 55.75 while unseen prompts have a median of
36.50. Although this implies that prompts that
share tokens with those used for training will per-
form worse, we find that there is no significant
correlation between the number of tokens a prompt
P shares with those used in training and its rank.

Finally, we find that longer prompts have a
slightly negative impact on the performance of
a prompt. Figure 4 shows that, with the 95
prompts used across eight tasks, the best perform-
ing prompts are those whose length is in the range

3Presented with a clear delimiters/separation. For example
A) yes B) no C) maybe



ANLI R1 ANLI R2 ANLI R3 AQuA CB Craigslist RTE WiC Rank

No Prompt 34.15 33.35 33.42 26.77 24.11 16.83 59.57 50.24 46.25

Unseen
Prompts

ANLI 37.60 34.70 34.08 25.95 32.14 21.44 64.62 50.16 24.50
AQuA 36.10 33.40 35.42 17.32 33.93 23.45 71.12 51.57 18.25
COPA 39.30 34.40 34.00 20.47 26.79 16.58 69.31 50.63 21.25
Craigslist 31.40 31.30 32.83 25.79 8.04 26.72 49.82 50.16 71.25
MathQA 37.30 33.50 34.25 19.29 26.79 16.25 73.29 51.10 24.50
RTE 36.10 33.20 33.58 22.05 23.21 20.27 61.37 50.47 43.25
SemEval2010 33.10 32.00 32.58 27.56 14.29 25.63 55.23 50.47 66.50
WiC 31.75 33.45 32.33 26.57 13.39 18.01 55.05 50.47 64.25

Training
Prompts

AppReviews 34.20 33.10 33.62 27.17 19.64 33.17 61.55 50.31 33.50
IMDB 33.00 32.20 33.08 26.38 12.50 14.57 55.23 50.16 71.25
Yelp 33.25 32.35 33.04 26.77 12.50 24.29 62.27 51.57 41.75

Table 2: Median Accuracy when using modified prompts for cross task zero-shot evaluation. Bolded entries are
prompts for the original task. Green Cells and Red Cells are the best and worst performing tasks for a column
respectively. Rank is the median rank of prompts from this task out of 95 total prompts. ANLI and CB both use the
same prompts for their original task prompts per PromptSource. Some tasks are left out for clarity. The full table
can be found in Table 6.

[14, 21) as their MAR is 28.50 and MFR is 36.50.
The Q1 values are 18.00 and 15.38, respectively.
In comparison, we find that prompts with lengths
with lengths ≥ 25 have a median MAR of 50.25
and MFR of 72.00, indicating a negative impact on
performance. Surprisingly, we find that prompts
whose lengths are < 14 have a median MAR of
47.75 and MFR of 49.00. While this is a negative
impact on performance, it is not as large as that in
longer prompts.

5 Related Works

Pre-trained Language Models In the past few
years, large pre-trained models have rose to promi-
nence due to their strong performance on a wide
range of NLP tasks (Radford et al., 2019; Brown
et al., 2020; Lewis et al., 2020). In particular, T5
(Raffel et al., 2020) explored transferred learning
for large LMs by transforming all NLP problems
to a text-to-text format. One aspect of large LMs is
that they perform well in zero-shot settings (Rad-
ford et al., 2019; Brown et al., 2020; Vu et al.,
2020).
NL Prompting A drawback of these large LMs
is that their size makes it costly to fine-tune them.
This lead to the rise of the “pre-train, prompt, and
predict” paradigm in which a downstream tasks
are modified to resemble those used in training
through the use of NL prompts (Liu et al., 2021b).
These prompts have improved few-shot and zero-
shot performance across a vast number of models
and tasks (Brown et al., 2020; Schick and Schütze,

2021b,a; Mishra et al., 2021; Scao and Rush, 2021;
Shin et al., 2020). Recent models such as FLAN
(Wei et al., 2021b) and T0 (Sanh et al., 2021) have
shown that even better zero-shot performance can
be achieved through using a multi-task pre-training
objectives with a diverse set of prompts.

6 Conclusion

In this paper, we examined T0’s performance on
a range of fixed multiple-choice tasks. We find
that T0 does worse than T5 on two unseen com-
plex tasks. Next, we evaluated how the perfor-
mance of a prompt transfers between tasks. Our
results show that using a prompt performs consis-
tently better than not using any prompt. We con-
clude with a quantitative analysis of what aspects
of a prompt affect its performance. We find that
prompts with the choices in them are 66.82% better
than those that leave the choices out. Next, we find
that prompts not used in pre-training are 19.64%
better than those that were. Finally, we find that
prompts whose length are between 14 and 24 per-
form better than both longer and shorter prompts.
Further work should examine prompt transfer with
larger models while also expanding the number of
prompts and tasks used.
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A Generalized Prompts

The tasks we took prompts from that were not used
to train T0 are:

• COPA (Roemmele et al., 2011)

• FinancialNews (Malo et al., 2014)

• LAMBADA (Paperno et al., 2016)

• MathQA (Amini et al., 2019)

• MultiXSci (Lu et al., 2020)

• NumerSense (Lin et al., 2020a)

• SemEval2010 (Hendrickx et al., 2010)

• ZEST (Weller et al., 2020)

The tasks we took prompts from that were used to
train T0 are:

• AppReviews (Grano et al., 2017)

• Adversarial QA (Bartolo et al., 2020)

• CommonGen (Lin et al., 2020b)

• IMDB (Maas et al., 2011)

• XSum (Narayan et al., 2018)

Task Name # Type MCQ

Text 6 All Three ✓

Text+Choices 6 All Three ✓

ANLI 9 ENTAILMENT

AQuA 5 CLASSIFICATION ✓

COPA 3 ENTAILMENT

Craigslist 4 CLASSIFICATION ✓

FinancialNews 4 CLASSIFICATION

LAMBADA 3 CLASSIFICATION

MathQA 5 CLASSIFICATION ✓

MultiXSci 4 CLASSIFICATION

NumerSense 5 CLASSIFICATION

RTE 5 ENTAILMENT

SemEval2010 3 CLASSIFICATION

WiC 4 ENTAILMENT

ZEST 4 QA

AppReviews 2 CLASSIFICATION

AdversarialQA 4 QA
CommonGen 2 CLASSIFICATION

IMDB 5 CLASSIFICATION

XSum 4 CLASSIFICATION

Yelp 4 CLASSIFICATION

Table 3: Number of prompts used by task for the gener-
alized prompts. # is the number of prompts used from
this task. MCQ indicates if the task had prompts that are
formatted as an multiple choice question with choice
letters.

B Complex Task Datasets

The two complex task used to evaluate T0’s perfor-
mance are:
Algebra Question Answering (AQuA) Dataset
of multiple choice algebraic word problems. The
choices for this task are {A,B,C,D,E} and each
letter maps to a potential mathematical answer
(Ling et al., 2017).
CraigslistBargains A collection of dialogues
involving two-parties negotiating the price of an
item for sale on Craigslist. For the scope of this
paper, we use the task of classifying who won the
negotiation (He et al., 2018).

C Additional Results

This section is for results that could not be included
in the main body of the paper due to the page limits.
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Figure 2: Median Accuracy with interquartile range for three models: GPT-3 , T5 , and T0 . Darker indicates
larger model. Results for GPT-3 Model are from Brown et al. (2020). Results for the 11B T0 and T5 models are
taken from Sanh et al. (2021)

Task Model Accuracy F1

ANLI R1
T0 34.30 26.17
T5 33.40 20.28

ANLI R2
T0 33.40 23.70
T5 33.50 21.25

ANLI R3
T0 33.42 21.82
T5 33.33 24.84

AQuA
T0 18.90 15.04
T5 24.41 12.74

CB
T0 55.36 38.62
T5 21.43 19.41

CraigslistBargains
T0 33.42 18.45
T5 44.89 16.47

RTE
T0 59.21 69.56
T5 52.89 36.08

WiC
T0 50.86 8.81
T5 50.16 5.44

Table 4: Median accuracy and F1 for the corresponding
Figure 2.

Figure 3: Distribution of choices for T0 and T5 on the
AQuA and CraigslistBargains.

Accuracy F1

Has Choices -0.14 -0.27
Is MCQ -0.16 -0.25
Training Prompt 0.07 0.13
Length 0.14 0.18

Table 7: Correlations with metric rank for a given
prompt quality. Per the definition of rank, a lower score
is better and therefore a negative correlation indicates a
quality improves performance. Length is measured as
the raw number of tokens in a prompt.



Accuracy F1
Ablation Mean Median Q1 Q3 Mean Median Q1 Q3

Training Prompts 51.46 50.25 45.25 63.00 54.18 55.75 38.00 66.00
Unseen Prompts 42.72 42.00 23.50 60.75 42.46 36.50 22.00 62.50

With Choices 39.44 33.12 20.19 58.62 39.37 31.00 19.12 61.75
No Choices 51.73 52.25 44.75 60.50 55.93 53.50 43.00 66.00

Is MCQ 25.80 22.25 16.50 26.00 23.14 16.50 13.75 25.25
Not MCQ 43.28 36.00 26.38 62.62 43.95 36.50 22.00 65.50

Extra Text 44.99 46.75 28.81 60.31 46.44 46.50 27.75 66.00
No Extra Text 44.41 48.00 32.75 57.62 45.43 44.50 26.62 62.25

Table 5: Accuracy and F1 ranks for different ablations. It is calculated by taking the median rank of a given prompt
across all 8 tasks then taking the Mean, Median, Q1, and Q3 of that. Lower is better. Q1 and Q3 are the first and
third quartile.

ANLI R1 ANLI R2 ANLI R3 AQuA CB Craigslist RTE WiC Rank

No Prompt 34.15 33.35 33.42 26.77 24.11 16.83 59.57 50.24 46.25

Unseen
Prompts

ANLI 37.60 34.70 34.08 25.95 32.14 21.44 64.62 50.16 24.50
AQuA 36.10 33.40 35.42 17.32 33.93 23.45 71.12 51.57 18.25
COPA 39.30 34.40 34.00 20.47 26.79 16.58 69.31 50.63 21.25
Craigslist 31.40 31.30 32.83 25.79 8.04 26.72 49.82 50.16 71.25
FinNews 33.05 31.65 32.83 25.95 18.75 19.68 55.78 50.31 64.00
LAMBADA 34.00 32.40 32.50 26.77 19.64 16.08 57.76 50.78 58.50
MathQA 37.30 33.50 34.25 19.29 26.79 16.25 73.29 51.10 24.50
Multi-XSci 34.20 32.70 32.75 27.17 19.64 19.43 58.84 50.31 54.75
NumerSense 37.70 33.30 33.17 25.20 25.00 15.75 65.70 50.63 40.50
RTE 36.10 33.20 33.58 22.05 23.21 20.27 61.37 50.47 43.25
SemEval2010 33.10 32.00 32.58 27.56 14.29 25.63 55.23 50.47 66.50
WiC 31.75 33.45 32.33 26.57 13.39 18.01 55.05 50.47 64.25
ZEST 35.20 32.65 33.38 26.77 23.21 17.76 66.79 50.71 38.25

Training
Prompts

AppReviews 34.20 33.10 33.62 27.17 19.64 33.17 61.55 50.31 33.50
CommonGen 33.75 33.35 32.50 25.39 13.39 23.62 51.81 51.18 58.75
IMDB 33.00 32.20 33.08 26.38 12.50 14.57 55.23 50.16 71.25
XSum 33.50 32.00 33.00 26.97 10.71 19.26 57.22 50.86 58.50
Yelp 33.25 32.35 33.04 26.77 12.50 24.29 62.27 51.57 41.75

Table 6: Median Accuracy when using modified prompts for cross task zero-shot evaluation. Bolded entries are
prompts for the original task. Green Cells and Red Cells are the best and worst performing tasks for a column
respectively. Rank is the median rank of prompts from this task out of 95 total prompts. ANLI and CB both use the
same prompts for their original task prompts per PromptSource.



Figure 4: Accuracy and F1 rank compared with the number of tokens in the prompt. The tick value is the lower
bound of the range. p=The number of prompts that fall into that respective range.


